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Introduction
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What is this?



Introduction

• Human recognize     as word tree
– With properties: green, tall, plant, long-living, …
– Maybe in other languages: 木, 나무, Arbre, Baum, дерево, …

• How about machine?
– tree = 74 72 65 65
– Machine can only process numbers orz

– Machine cannot directly understand semantics from text orz

• New representation of word is needed!
– As structure containing numerical value (array/vector/matrix)
– It would be good if the representation has the semantics 
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Bag-of-words

• Regard word as discrete symbols
– Ex: animal=10, house=12, plant=31

• Words can be represented as one-hot vector
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animal
house
plant

[ 0 0 0 0 0 .. 0 1 0 0 0 … 0 0 0 0 0 ]
[ 0 0 0 0 0 .. 0 0 0 1 0 … 0 0 0 0 0 ]
[ 0 0 0 0 0 .. 0 0 0 0 0 … 0 1 0 0 0 ]

Vector dimension = Number of words



Bag-of-words

• Problem with bag-of-word representation
– Example: can we get similarity between house and home?

how about house and text? (assume home=3, text=5)

– This vector representation does not contain semantic
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house
home

text

[ 0 0 0 0 0 .. 0 0 0 1 0 … 0 0 0 0 0 ]
[ 0 0 1 0 0 .. 0 0 0 0 0 … 0 0 0 0 0 ]
[ 0 0 0 0 1 .. 0 0 0 0 0 … 0 0 0 0 0 ]

all vectors are orthogonal to each other!
→ similarity = 0



WordNet

• How can we know the semantic?
– One available solution: using human resource

• WordNet: contains the list of synonyms/hypernyms
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synonyms hypernyms
Image from [1]



WordNet

• One way to utilize WordNet?
– Example: sum of one-hot vector for synonyms/hypernyms?
– Does the accurate word similarity can be calculated?

• Problems with using human resource
– Can missing nuance

• Does right is always used as a synonym for good?

– Can missing new meanings of words
• wicked (morally wrong and bad → very, really / excellent)
• Keeping up-to-date is very hard!

– Require human labor to maintain (create, adopt)
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Words as context
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“You shall know a word by the company it keeps”

• Word’s meaning is given by words that frequently 
appear close-by 
– Context: set of words that appears nearby in the fixed-size 

window (ex: before/after 5 words)
• Why not full words?

Image from [1]



Words as context
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• Full document vs Window
– Full document: general topics of the word

• Latent Semantic Analysis
• Expensive for word representation

– Window around each word
• Gives syntactic (Part of Speech), semantic info

• How to make context represent word?
– Co-occurrence matrix (count-base method)

Image from [1]

I - like : 2,
like - deep: 1,

…

I like deep learning . / I like NLP . / I enjoy flying .



Co-occurrence Matrix Example
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vector for “like”

Vector dimension = Number of words

window size: 1
I like deep learning . / I like NLP . / I enjoy flying .

Image from [1]



counts I like enjoy deep learning NLP flying .

I 0 2 1 1 0 1 1 0

like 2 0 0 1 1 1 0 1

enjoy 1 0 0 0 0 0 1 1

deep 1 1 0 0 1 0 0 1

learning 0 1 0 1 0 0 0 1

NLP 1 1 0 0 0 0 0 1

flying 1 0 1 0 0 0 0 1

. 0 1 1 1 1 1 1 0

Co-occurrence Matrix Example
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window size: 2
I like deep learning . / I like NLP . / I enjoy flying .

Vector dimension = Number of words



Problem?
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• We can now compare the two word representations

• For long text resource…? @_@



Problem?
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• For 10,000 words?
– 10,000x10,000 matrix (about 4GB)

• The size of the word is much larger in real cases
– The vector size is too big, but our memory size is limited
– Sparsity: almost of values are 0
– Inefficient to process (vector size too big)

• Solution?
– Sparse matrix representation (CSR, CSC, etc)
– Dimensionality reduction (PCA, SVD)



Problem?
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Image from https://www.tensorflow.org/tutorials/word2vec

Sparsity: almost of elements are 0!
(Still has problem of Bag-of-Word representation)

https://www.tensorflow.org/tutorials/word2vec


Dimensionality Reduction

• Store most of the important information in fixed, small 
number of dimensions (as dense vector)

• Singular Value Decomposition (SVD)
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Image from https://intoli.com/blog/pca-and-svd/
(Problem?)

https://intoli.com/blog/pca-and-svd/


Word Vectors

• Also called word embedding
• Words are now represented as dense vector

– Expected: words have similar vector representation 
if they has similar context

Word Embedding 17

house
home

text

[ 0 0 0 0 0 .. 0 0 0 1 0 … 0 0 0 0 0 ]
[ 0 0 1 0 0 .. 0 0 0 0 0 … 0 0 0 0 0 ]
[ 0 0 0 0 1 .. 0 0 0 0 0 … 0 0 0 0 0 ]

house
home

text

[ 0.537,  0.596,  0.813, … , 0.631,  0.681 ]
[ 0.611,  0.237,  0.506, … , 0.678,  0.672 ]
[ 0.091,  0.322,  0.397, … , 0.516,  0.283 ]

One-hot Vector

Dense Vector



Singularity in 2013
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Word2Vec Overview

• Basic: learning word vector from large corpus
– Every word in fixed vocabulary is represented by a vector
– Go through each position t in the text, 

consist of center word c and context words o
– Similarity of word vectors for c and o are used to 

calculate the probability of o given c (or c given o)
– Word vectors are continuously adjusted while training

Word Embedding 19
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Word2Vec Overview

• Objective: maximize probability of 𝑃𝑃(𝑊𝑊𝑡𝑡+𝑗𝑗|𝑊𝑊𝑡𝑡;𝜃𝜃)
– Minimize function 𝐽𝐽(𝜃𝜃)

– How to calculate 𝑃𝑃(𝑊𝑊𝑡𝑡+𝑗𝑗|𝑊𝑊𝑡𝑡;𝜃𝜃)?
• Use two vectors per word: use as center (𝑢𝑢) or context (𝑣𝑣)
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CBOW vs Skip-gram
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See neighbor words
to predict current word

See current word
to predict neighbor words

Previous Example



Word2Vec Analogy
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Word2Vec Analogy

Word Embedding 23

Slide from [1]



Variant of word2vec framework

• Improvements
– GloVe (utilize global statistics)

• Optimized for specific domain/task
– Domain: tweet2vec, search2vec, item2vec, etc
– Task: entity disambiguation, sentiment analysis, etc

• Extend to larger structures
– Sentence and Document (ex: doc2vec)

• Utilize sub-word information (instead of word)
– Character-level (ex: charCNN, charRNN) 
– Subword-level (ex: fastText)

• Exploit language-specific features
– Chinese: radical(部首) / Korean: letter(자모)
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Count-base vs Direct Prediction
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Slide from [1]



GloVe

• GloVe: Global Vectors for Word Representation.
– Jeffrey Pennington, Richard Socher, and Christopher D. 

Manning. 2014. (Stanford)
– https://nlp.stanford.edu/projects/glove/
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Slide from [1]

co-occurrence 
count information

https://nlp.stanford.edu/projects/glove/


fastText

• Enriching Word Vectors with Subword Information
– Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas 

Mikolov, 2016 (Facebook Research)
– https://arxiv.org/abs/1607.04606

• Using subword information (n-gram)
– Example: hungry → {ℎ𝑢𝑢𝑢𝑢,𝑢𝑢𝑢𝑢𝑢𝑢,𝑛𝑛𝑛𝑛𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔} (with 3-gram)
– Why subword?

• Coverage (deal with out-of-vocabulary)
• Robustness (typo like hungty)
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https://arxiv.org/abs/1607.04606


Cross-lingual

• We knows:

• We can make embedding for two language
– Training individually
– Can they be directly compared? ex: sim(𝑣𝑣𝑒𝑒𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , 𝑣𝑣𝑘𝑘𝑘𝑘(식물))

• We want to represent these in the same embedding
– Resource imbalance (English vs other languages)
– Leverage existing knowledge in English to other language

Word Embedding 28

Tree = 나무
Plant = 식물



Relations in Embedding Space
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Intuition: similar geometric relations

Image from (Mikolov et al., 2013)

English Spanish



Convert-base method

• Monolingual mapping
– Train word embedding for each language in large corpus
– Apply linear transformation after trained with known pairs
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𝑊𝑊𝑒𝑒𝑒𝑒→𝑘𝑘𝑘𝑘 𝑉𝑉𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑘𝑘𝑘𝑘×

Embedding Space for English Embedding Space for Korean

Objective:



Various Strategies for cross-lingual

• Make “convert function”
– Monolingual mapping

• Train with multi-language corpus 
– Pseudo-cross-lingual (mixing contexts)

• Make unique representation
– Cross-lingual training
– Optimize cross-lingual constraint to make close each other 

• Joint optimization
– Training the models on parallel, optimize a combination of 

monolingual & cross-lingual loss
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Applications

• Word Similarity
– Classic method: edit distance, wordnet, stemmer, 

lemmatization, etc…
• Stemming (argue, argued, argues → argu)
• Lemmatization (occurring → occur, taken → take) 

– Inflections, Tense forms
• Think, thought, ponder, pondering,
• Plane, Aircraft, Flight

• With word embedding: get vector similarity (cosine)
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Applications

• Machine Translation
– Classic Methods: Rule-based machine translation, 

morphological transformation
– Word embedding can be used as input for NMT
– Cross-lingual embedding
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Applications

• Sentiment Analysis
– Classifying sentences as positive or negative
– Classic Methods: Naive Bayes, Random Forests/SVM

– Building sentiment lexicons
using seed sentiment sets

– We can just use cosine similarity
to compare unseen reviews to 
know reviews. (no classifier!)

– Can used as a feature for classifier
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