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* Machine Learning and Deep Learning

 Neural Network Architectures
— Convolutional Neural Network (CNN)
— Recurrent Neural Network (RNN)

e ...and some practices later (with pytorch)

X Most of the material is from [1], [2], [3] in References slide.




Machine Learning?

e Machine learning: a field of computer science that
gives computers the ability to learn without being
explicitly programmed
— Can learn from and make predictions on data

Machine Learning
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Types of Learning

« Supervised: Learning with a labeled training set
— email classification with already labeled emails

* Unsupervised: Discover patterns in unlabeled data
— cluster similar documents based on text

« Reinforcement learning: learn to act based on
feedback/reward

— Go agent (alphaGo) - reward: win or /ose
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ML vs. Deep Learning

e Still needs human works

— Most machine learning methods work well because of human-
designed representations and input features

— ML becomes just optimizing weights to best make a final
prediction (tuning)

Machine Learning in Practice Feature NER
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Deep Learning?

« Subfield of ML: learning representations of data.

— Attempt to learn (multiple levels of) representation by
using a hierarchy of multiple layers

— If you provide the system tons of information, it begins to
understand it and respond in useful ways.

— Exceptional effective at learning patterns!
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Why is DL useful?

Existing ML uses manually designed features
— often over-specified and incomplete
— take a long time to design and validate

« Learned Features are easy to adapt, fast to learn

e Deep learning provides a very flexible, (almost?)
universal, learnable framework for representing
world, visual and linguistic information.

— For both unsupervised and supervised

« Effective end-to-end joint system learning
« Utilize large amounts of training data
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In Google Trend...

machine learning

deep learnin . y :
_p term . : Search term : + Add comparison
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State of the art in ...

100%a According to Microsoft's
speech group:
Using DL
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State of the art in ...

DEEP LEARNING FOR VISUAL PERCEPTION

Going from strength to strength
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Image from https://blogs.nvidia.com/blog/2016/06/29/deep-learning-6/
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State of the art in ...

« Several big improvements in recent years in NLP
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Neural Network Basis
hidden

Demo (tensorflow playground)

h = |o((W,

x+b1)

Weights & Activation Functions

2
----------

4 + 2 = 6 neurons (not
[3x4]+[4x2]=

counting inputs)
20 weights

4 + 2 = 6 biases

26 learnable parameters

How do we train?



http://playground.tensorflow.org/
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Training Process

1. Sample labeled data 2. Forward it through the
(batch input) network, get predictions

4. Update the 3. Back-propagate
network weights the errors

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

o

Optimize (min. or max.) objective/cost function J(0)
Generate error signal that measures difference
between predictions and target values
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https.//medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
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Problems?

error
A inadequate good compromise over-fitting
https://www.neuraldesigner.com/images/learning/selection_error.svg
Over-fitting
test . . .
Learned hypothesis may fit the training
data very well, even for outliers (noise)
training but fail to generalize to new examples
> (test data)
underfitting # parameters mferﬁtting
(high bias) (high variance)

Solution: regularization, etc

https://www.neuraldesigner.com/images/learning/selection_error.svg
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Neural Network Architectures

[LeCun et al., 1998]
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Convolution Neural Network (CNN)

Convolution Layer
32x32x3 image
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/ V 5x5x3 filter
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Images from CS231n lecture slides

Animation from https://github.com/vdumoulin/conv_arithmetic
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Convolution Neural Network (CNN)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

\

.

We stack these up to get a “new image” of size 28x28x06!

28
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Pooling layer

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

- 0

- 112
224 downsampling !
T

224

Images from CS231n lecture slides
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Max Pooling

MAX POOLING
Single depth slice
1] 1]2]4
max pool with 2x2 filters
5|6 |7 |8 and stride 2 6 | 8
312|11]0 3 | 4
112 3| 4
y

Images from CS231n lecture slides
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ConvNet
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Images from https://blog.floydhub.com/building-your-first-convnet/



https://blog.floydhub.com/building-your-first-convnet/
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CNN Applications

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Images from CS231n lecture slides
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CNN Applications

Fast-forward to today: ConvNets are everywhere

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015, Reproduced with
permission. . ; Reproduced with permission. {Farabet et Ef y 2012}
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Images from CS231n lecture slides
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CNN Applications

Gatys o1 al, “Image Sy Transfer wing Comebutiorsl Neural Metworks™, CYPR 2006

Figiames capyright hustin Johnsagn, 2015, Repreduced with permision, Generated psing the Inceptionism approach Bk impate 4 in the public domain
el : I : ol = . I i Gatys 1 al. “Cortrolling Perceptual Factors in Neural Style Traesfer”™, CVPR 2007

T et gt by Googla Rassanch Stylized images copyright Justin lofmson, 2007;
reproduced with permizsion

Style Transfer

Images from CS231n lecture slides
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Recurrent Neural Network (RNN)
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RNN Applications

g = P(2'®|the students opened their)
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Images from CS224n lecture slides
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RNN Applications

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. A
Provides initial hidden state
for Decoder RNN.

N\

3
the poor don’t have any money <END>

= o
2 3
o}
- 2

les pauvres sont démunis <START> the poor don’t have any money

\ J

Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

Images from CS224n lecture slides
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RNN Applications

message
response
message
response
message
response

ENCODER

Where do you live now?

I live in Los Angeles.

In which city do you live now?

I live in Madrid.

In which country do you live now?
England, you?
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tomorrow?

J

v

Incoming Email

Reply

i

[ thought vector |

Yes,
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I

up? <END>

|

A

I

<START>

_ ]

} I
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DECODER

Question Answering, Conversation (Chatbot)

Images from:

http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/
https://medium.com/botsupply/generative-model-chatbots-e422ab08461e



Deep Learning Intro

RNN Applications

Vision Language A grou-p of P90p|e
Deep CNN Generating shopplng at an
RNN outdoor market.

-
O
— @ There are many

vegetables at the
fruit stand.

Image/Video Caption

Images from https://research.googleblog.com/2014/11/a-picture-is-worth-thousand-coherent.html
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